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A Balls-and-Bins Model of Trade †

By Roc Armenter and MiklÓs Koren *

Many of the facts about the extensive margin of trade—which firms 
export, and how many products are sent to how many destinations—
are consistent with a surprisingly large class of trade models because 
of the sparse nature of trade data. We propose a statistical model to 
account for sparsity, formalizing the assignment of trade shipments 
to country, product, and firm categories as balls falling into bins. 
The balls-and-bins model quantitatively reproduces the pattern of 
zero product- and firm-level trade flows across export destinations, 
and the frequency of multiproduct, multidestination exporters. In 
contrast, balls-and-bins overpredicts the fraction of exporting firms. 
(JEL F11, F14)

International trade has long been concerned with aggregate patterns—what and how 
much countries trade with each other. The recent availability of finely disaggregated 
trade data has spurred a fast-growing research that documents the extensive margin in 
trade—which firms export, and how many products they send to how many destina-
tions. A number of stylized facts have emerged regarding the incidence and pattern of 
zero trade flows at the product and the firm level, the size and frequency of exporters, 
and the size and frequency of multiproduct and multidestination exporters.1

Are these facts useful for testing new theories of the extensive margin of trade? We 
argue that some, though not all, of the facts are consistent with a surprisingly large 
class of trade models. For example, there are many trade models successful at repro-
ducing the distribution of trade across countries—typically relying on a gravity equa-
tion—and the sector composition of trade. All of these models, even those without an 
explicit treatment of the extensive margin, will replicate the prevalence and pattern of 
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and Harrigan (2011); Haveman and Hummels (2004); and Hummels and Klenow (2005) on zero trade flows; 
Bernard and Jensen (1999); Bernard et al. (2003); Bernard, Jensen, and Schott (2009); Bernard et al. (2007); and 
Eaton, Kortum, and Kramarz (2004, 2011) for firm-level facts. See the main text and the online Appendix A for 
further discussion.
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zero trade flows as well. Similarly, provided a model matches the observed skewness 
in export sales, it will predict that most exports are done by relatively few, but large, 
multiproduct, multidestination exporters. The reason lies in the nature of trade data.

Our first observation is that disaggregate trade data are categorical by construc-
tion. We observe a finite number of shipments which constitute the basic units of 
observation.2 Each shipment is then assigned a unique category in each classifica-
tion; that is, the shipment belongs to one of many product codes, goes to one of 
many destination countries, and is sold by one of many firms in the economy.

The categorical nature of trade data is important, because these data are typically 
sparse. That is, the number of observations is low relative to the number of pos-
sible classifications. There were about 22 million export shipments originating in 
the United States in 2005—and thus the same number of observations. At the same 
time, there are 229 countries and 8,867 product codes with active trade, so a ship-
ment can have more than 2 million possible country-product classifications. More 
than 40 percent of the traded country-product pairs had only one or two shipments 
during the year, a clear sign that the data are sparse.3

We propose a parsimonious statistical benchmark for sparse categorical datasets to 
discern which data moments are informative about the correct model of the extensive 
margin. Our starting point is a simple random-assignment model which requires infor-
mation only on the number of observations and the marginal distributions across cat-
egories, say, the distribution of trade across countries or across products. Importantly, 
we do not need to know which product is exported to which country. We instead keep 
our benchmark as atheoretical as possible by assuming no systematic relationship 
between categories when constructing the joint distribution across all classifications, 
e.g., each country is expected to receive the same distribution of products and so on.

We formalize the assignment of observations to categories as balls falling into 
bins. Each observation constitutes a discrete unit (the ball), which, in turn, is allo-
cated into mutually exclusive categories (the bins). Because we want a parsimoni-
ous benchmark, the model assigns balls to bins at random. That is, a ball falling in 
a particular bin is an independent and identically distributed random event whose 
probability distribution is determined solely by the distribution of bin sizes.

In spite of its simplicity, the balls-and-bins model makes a rich set of predictions. 
After a number of balls, some bins will end up empty and some will not. Among the 
latter, some will contain a large number of balls, some few. These are taken to be the 
model’s predictions for the extensive and intensive margin, respectively. We charac-
terize the prevalence of zeros and how it varies with the number of balls and the bin-
size distribution. These are indeed all the model’s systematic relationships between 
export flows and the extensive margin: the assignment of balls to bins is random.

The number of balls and the distribution of bin sizes are treated as parameters in 
the model. These can be calibrated directly from the data, i.e., the actual number of 
observations, the observed distribution of trade across countries; or from the cor-
responding predictions of a structural model or a reduced form specification like 

2 Trade data are collected through customs forms, one for each export shipment. See online Appendix A for details.
3 Statistical inference on categorical datasets requires a much larger sample size. Indeed, the sample size needed 

grows very fast with the number of categories K. For example, the number of observations must be of order 
O(K log(K )) for maximum likelihood estimates to exist. See Section 9.8 of Agresti (2002) for a summary discus-
sion of statistical inference in sparse categorical data.
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the gravity equation. Our baseline calibration assumes no systematic relationship 
between firms, countries, and products: for example, the probability a shipment is 
classified as a certain product is independent of the shipment’s destination country. 
We chose this approach to avoid imposing any structure regarding the joint distribu-
tion of trade across products, countries, and firms.

We contrast the balls-and-bins model against the data for several statistics about 
the extensive margin typically reported in the literature (see Table 1). Statistics that 
are matched by the balls-and-bins model are not helpful in differentiating models 
of the extensive margin of trade: these statistics will be consistent with a very large 
class of models, namely, any model that is successful at matching the marginal dis-
tributions across categories—the distribution of trade across countries and products. 
Many trade models, including several with no explicit treatment of the extensive 
margin, can reproduce accurately how aggregate trade flows vary across countries 
(the gravity equation) and are capable of encompassing the necessary heterogeneity 
at the product and firm level.

If, on the other hand, the balls-and-bins model does not match a statistic, then a 
trade model has a chance to distinguish itself from the competition by positing the 
correct structure on the joint distribution of trade across countries, products, and 
firms. Indeed, we envision the balls-and-bins model establishing a benchmark for 
the quantitative evaluation of structural models in sparse datasets.

Table 1 summarizes our findings. For 12 statistics we report the data and the 
corresponding prediction by the model—the details on both are in the main text. 
Zero product-level trade flows are as prevalent in the model as in the data; the pat-
tern of zeros across export destinations is also the same. Indeed, we replicate facts 
regarding zeros as long as trade flows across countries follow a gravity specifica-
tion, and the trade shares across product categories are skewed. Trade with most 
of the countries is then very small, and most of the traded product categories are 
tiny. It is exactly for these country-product pairs that the trade flows are missing 
in the data. They go missing in the model as well: few balls and tiny bins make for 
many empty bins.

The balls-and-bins benchmark also matches several of the firm-level facts: in the 
model, as in the data, most firms export a single product to a single country, but 
these firms represent a very small fraction of total exports. It is the left tail of the 
distribution of exports across firms which proves key to reproducing these firm-level 
facts. Most exporters are tiny and are, hence, assigned only one ball in the model. 
They are thus predicted to be single-product, single-country exporters. Several mod-
els in the literature are able to reproduce the skewness in sales; the incidence and 
relative size of single- and multiproduct exporters follows for all of them.

Finally, we attempt to predict the share of exporters among manufacturing firms. 
According to the balls-and-bins model, 74 percent of firms should export—in con-
trast with 18 percent in the data. The balls-and-bins benchmark is clearly nowhere 
close to the data, signaling that the relationship between firms and foreign market 
access is not driven by sparsity alone. Thus the split between exporters and nonex-
porters is a useful statistic to discern among structural models: matching the data 
requires imposing the correct systematic relationship between firms and export flows.

We must emphasize that in a dense dataset—i.e., with many observations relative 
to the number of categories—the balls-and-bins model would be unable to match 
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any fact on the extensive margin. Indeed, all bins would be nonempty and the pre-
dictions for the extensive margin would be trivial.

In Section V, we illustrate why identifying theories can be difficult when data are 
sparse and how the balls-and-bins benchmark can identify which statistics remain 
informative nonetheless. We show how to take structural trade models to sparse 
categorical data and under what conditions the predictions of these models will be 
similar to balls and bins. In other words, when does a richer structural model nest 
balls-and-bins as a special case? The predictions of any two such models will be 
close to balls-and-bins, and, hence, to one another, whenever balls-and-bins matches 
the data. If the balls-and-bins prediction is far from the data, however, we can iden-
tify the relevant model more precisely. We illustrate each case with the fraction of 
product-country zeros and the firm’s export participation margin, respectively.4

A paper close to us in spirit is Ellison and Glaeser (1997). They ask whether the 
observed levels of geographic concentration of industries are greater than would be 
expected to arise randomly. To this end they introduce a “dartboard” model of firm 
location. In contrast with our results, the dartboard model reaffirms the previous 
results on geographic concentration. Ellison and Glaeser (1997) are also able to 
provide a new index for geographic concentration which takes a value of zero under 
the dartboard model and, thus, controls for the mechanical degree of concentration 
arising from randomness. Such an index is more difficult for trade facts which do not 
focus on a particular dimension.

4 In online Appendix D, we show how to nest the balls-and-bins framework and generate sparse data predictions 
from a standard trade model featuring comparative advantage and economies of scale. We also show that the model 
encompasses our baseline calibration as a special case. In a numerical exercise we have no problem pinning down 
the firm’s fixed cost of exporting, a parameter closely tied to the share of exporters; however, the fraction of zeros 
in trade flows fails to identify the relevant parameters.

Table 1—Summary of Findings

Description Data Balls-and-bins

HS10-level product × country US export flows
Share of zeros 82% 72%
OLS coefficient of nonzero flow on GDP 0.08 0.10

Firm × country US export flows
Share of zeros 98% 96%
Gravity equation for firms, GDP OLS coefficient 0.71 0.60

Single-product exporters
Fraction of total exporters 42% 43%
Share of total exports 0.4% 0.3%

Single-destination exporters
Fraction of total exporters 64% 45%
Share of total exports 3.3% 0.3%

Single-destination, single-product exporters
Fraction of total exporters 40% 43%
Share of total exports 0.2% 0.3%

Exporters in US manufacturing
Fraction of total firms 18% 74%
Size premium of exporters 4.4 34

Note: Details on sources, data, and model are in the main text and in online Appendix A.
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The questions sparsity raises are similar to the debate about the theoretical con-
tent of the gravity equation for bilateral trade flows. The gravity equation is hugely 
successful in predicting trade flows, yet it may be of limited use in distinguishing 
trade theories. Deardorff (1998) argues that “just about any plausible model of trade 
would yield something very like the gravity equation”; hence, the gravity equation 
should not be the basis for favoring one theory over another. Evenett and Keller 
(2002) and Haveman and Hummels (2004) also show that the gravity equation is 
consistent with both complete and incomplete specialization models.

Our article is also related to a large literature that tests the robustness of empirical 
findings through Monte Carlo techniques or sensitivity analysis. To our knowledge 
these tests have not been commonplace in international trade. An early exception is 
the analysis on trade-related international R&D spillovers in Keller (1998). There 
has also been some work on the robustness of gravity equation models. Ghosh and 
Yamarik (2004) use Leamer extreme bounds analysis to construct a rigorous test 
of specification uncertainty and find that the trade creation effect associated with 
regional trading arrangements is fragile. Schaefer, Anderson, and Ferrantino (2008) 
use Monte Carlo experiments to explore alternative specifications of the gravity 
model and find coefficient bias to be pervasive.

I.  Balls and Bins

We model the assignment of export shipments to categories as balls falling into 
bins. The balls-and-bins model reproduces the categorical structure inherent in dis-
aggregate trade data. A trade flow (such as total exports from the United States to 
Argentina, or total exports of a given firm) is composed of a finite number of ship-
ments, each of them a discrete unit of observation (the balls). Every shipment has 
been classified into mutually exclusive categories, for example, into one of the ten-
digit Harmonized System product classifications (the bins).

Formally, let n ∈ ℕ be the number of balls (observations). Let K ∈ ℕ be the 
number of bins (categories), each of them indexed by subscript i ∈ {1, 2, … , K }. 
The probability that any given ball lands in bin i is given by the bin size ​s​i​  , with 
0 < ​s​i​ ≤ 1 and ​∑​ i=1​ 

K
  ​​ s​i​ = 1. Thus, where a ball lands is independent of the number 

and location of the other balls.
The state of the system is given by the full distribution of balls across bins, 

{​x​1​, ​x​2​, … , ​x​K​}. Clearly, this distribution is a random variable. Since we are primar-
ily interested in the “extensive margin,” that is, the split between empty and non-
empty bins, we define ​d​i​ to be an indicator variable that takes the value of 1 if bin i 
is nonempty, ​x​i​ > 0, and 0 otherwise. The “intensive margin” will be given by the 
number of balls per nonempty bin.

Figure 1 shows that the balls-and-bins model looks as simple as it sounds. 
Figure 1A depicts five bins, ordered by size. Figure 1B shows a particular realization 
after throwing seven balls. Bins 3 and 5 are empty, and thus we have ​d​3​ = ​d​5​ = 0.

We can derive the key moments of the model analytically. For given bin sizes 
{​s​1​, ​s​2​ , … , ​s​K​}, the joint probability of a number of balls {​x​1​, ​x​2​, … , ​x​K​}, is given 
by the multinomial distribution,

	 Pr (​x​1​, ​x​2​, … , ​x​K​)  = ​   n! _  
​x​1​! ​x​2​! ⋯ ​x​K​!

 ​ ​s​ 1​ ​x​1​​ ​s​ 2​ ​x​2​​ ⋯ ​s​ K​ ​x​K​​,
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where n = ​∑​ i=1​ 
K
  ​ ​x​i​  . Note that, given a total number of balls n, the particular number 

of balls in two given bins, ​x​i​ and ​x​j​, are not independent random variables. A ball 
falling in bin i is a ball less falling elsewhere, so it reduces the expected number of 
balls in bin j.

The model has a known probability distribution for the extensive margin. After 
dropping n balls the expected value of ​d​i​ is the probability that bin i receives at least 
one of those:

	 E(​d​i​ | n)  =  1 − Pr (​x​i​  =  0 | n)  =  1 − (1 − ​s​i​​)​n​.

Each ball has a (1 − ​s​i​) probability of landing elsewhere. Where a ball lands is an 
independent event; therefore, the probability that none of n balls falls in a given bin i 
is (1 − ​s​i​​)​n​. Obviously, as the number of balls increases, it is less and less likely that 
any given bin remains empty. In the limit, as n → ∞, the probability Pr(​x​i​ = 0 | n) 
is zero for all bins i ∈ K.

We denote the total number of nonempty bins by k,

	 k  = ​ ∑​ 
i=1

 ​ 
K

 ​ ​d​i​  .

Clearly, k is a random variable itself with k ∈ {1, 2, … , K }. Since the number of 
nonempty bins is a sum of random variables, we easily obtain that

(1)	 E(k | n)  = ​ ∑ ​ 
i=1

 ​ 
K

  ​​[ 1 − (1 − ​s​i​​)​n​ ]​.

This is our key statistic out of the balls-and-bins model. We will use it to derive 
many of the facts on the extensive margin, both at the country and at the firm level.

The comparative statics with respect to the number of balls are as one would 
expect: more shipments increase the expected number of nonempty bins. Perhaps 
more subtly, the relationship is not linear. The first few balls fall into distinct bins 
almost surely. Because of that, as long as balls are few, the number of filled bins is 
close to the number of balls and the relationship is essentially linear. In other words, 
most adjustment is on the “extensive margin.” As the number of balls increases, it 
is more and more likely that balls fall in nonempty bins, and the number of filled 

…
…

Panel A Panel B

 s 1 s 2 …
 x 1  = 4
 d 1  = 1

 x 2  = 2
 d 2  = 1

 x 3  = 0
 d 3  = 0

Figure 1. Balls-and-Bins
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bins trails the number of balls.5 Hence, the relationship flattens out and the number 
of filled bins increases slowly. The remaining balls can only add to the “intensive 
margin.” Note that the model is very stark in its limiting predictions as the number of 
shipments grows large: the number of empty bins converges almost surely to zero.

The expected number of nonempty bins also depends on the distribution of bin 
sizes. Two bins of equal size fill up very fast: toss a coin ten times and, with almost 
absolute certainty, the coin will have turned heads some times and tails some others. 
But if a bin is, say, ten times the size of the other, then a lot of balls may be needed 
to hit the small bin. This property of the model will play an important role later, as in 
many of the quantitative exercises the distribution of bin sizes is particularly skewed.

Formally, the expected number of nonempty bins (1) is convex in ​s​i​ for all n ≥ 2. 
This implies that as we even out a bin-size distribution, the expected number of 
nonempty bins increases.

Proposition 1: Let {​s​i​} be a bin-size distribution and let

(2)	 {​​ s ​​i​}  =  α{​s​i​}  +  (1 − α)1/K

for α ∈ [0, 1]. Then for all n ≥ 2 the expected number of nonempty bins under 
{​​ s ​​i​} is not less than under {​s​i​}.

In some occasions we will focus not on the extensive margin but on zeros, that 
is, the number of empty bins. It is, of course, trivial to derive the corresponding 
statistic:

	 K  −  E(k | n)  = ​ ∑​ 
i=1

 ​ 
K

 ​ (1 − ​s​i​​)​n​.

This is clearly decreasing in the number of balls, n.
We are also interested in the proportion of firms that sell only one product or serve 

only one country. To this end we derive the probability that a single bin contains all 
the balls or, equivalently, that exactly one bin is nonempty. Each ball had ​s​i​ prob-
ability of falling into bin i, so with probability ​s​ i​ n​ all balls fell in bin i. Of course, this 
could happen to any of the K bins, but they are mutually exclusive events. Hence,

(3)	 Pr(k  =  1 | n)  = ​ ∑​ 
i=1

 ​ 
K

 ​ ​s​ i​ n​.

The probability of a single nonempty bin decreases with the number of balls, n, and 
increases with the dispersion of bin sizes. Again, the model becomes degenerate as 
the number of balls grows: the probability of a single nonempty bin converges to zero.

5 The first ball falling into a nonempty bin comes very early, roughly in proportion to the square root of the num-
ber of bins, ​√

__
 K ​. This is sometimes known as the “birthday paradox”: it takes only 23 balls before any one of 365 

equal-sized bins will contain two or more balls with probability 1/2.
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A. Multiple Classification Systems

So far we have derived the relevant moments for a single trade flow. Often, how-
ever, we will be interested in aggregate statistics that involve many trade flows. 
For example, we will look at the fraction of empty product categories for total US 
exports as well as how this fraction varies across destinations.

In order to derive aggregate statistics we need to work with the dataset as a whole. 
The key difference is that each shipment is now classified along many dimensions. 
For example, in a dataset containing all US export each shipment is given one HS 
code as well as one export destination out of many different countries.

We introduce a two-dimensional version of the balls-and-bins model, where each 
shipment is randomly assigned a classification in two systems, with T and K cat-
egories, respectively.6 There is, conceptually, nothing different from the previous 
case: we can always rearrange the classification system into a row of bins of length 
TK, so that ​s​ij​ denotes the likelihood of the ball falling into category i along the first 
dimension and category j along the second. Using (1) we can derive the expected 
number of zeros,

(4)	 E(k | n)  = ​ ∑​ 
j=1

 ​ 
T

  ​ ​∑​ 
i=1

 ​ 
K

 ​ [1 − (1 − ​s​ij​​)​n​],

and similarly for the remaining predictions.
In order to keep the benchmark as parsimonious as possible, we assume each 

ball is randomly and independently allocated across classification systems. There is, 
thus, no systematic relationship across categories. For example, destination coun-
tries would buy the same basket of products in exactly the same proportions; or all 
exporters are equally likely to sell a given product to a given market. The indepen-
dence across classifications suits our pursuit of a parsimonious benchmark as we 
would only require information on the marginal distribution across categories and 
not on the joint distribution.7

Visually, one can think of throwing balls over a T by K grid of bins as in Figure 2. 
Each classification system comes with its size distribution, ​v​1​, ​v​2​, … , ​v​T​ and 
​s​1​, ​s​2​, … , ​s​K​, which, in Figure 2, pins down the size of rows and columns, respec-
tively. The probability of a given ball falling in the bin (i, j) is then ​v​i​ ​s​j​  .

An additional advantage of approaching the dataset as a whole is that it allows 
working with conditional moments, for example, the number of empty product bins 
for a given country. For each realization of ball throws there will be a number of 
balls in each row and in each column, denoted ​n​1​, ​n​2​, … , ​n​T​ and ​m​1​, ​m​2​, … , ​m​K​, 
respectively. (Note that ​n​i​ or ​m​j​ may be zero.) We can then ask the distribution of 
balls across columns 1, 2, … , K within a given row with ​n​j​ balls.

More interestingly, we can compute the statistics of interest given a distribution 
of balls ​n​1​, ​n​2​, … , ​n​T​ across rows. This will allow us, for example, to derive how 
the fraction of zero product-level bilateral flows varies across US export destinations 

6 It is also easy to extend the model to higher-dimensional classification systems.
7 The model remains tractable if we want to introduce a richer specification: see Section V and online Appendix 

D on how to generate sparse data predictions from structural models.
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using the actual aggregate export flows. Since the classification in each system is 
independent, the conditional statistics for any given row are as in the first version of 
the model. Let ​k​t​ denote the number of nonempty bins in row t. We can thus easily 
construct the distribution of the expected number of nonempty bins per category 
t ∈ T using (1):

(5)	 E(​k​t​ | ​n​t​)  = ​ ∑​ 
i=1

 ​ 
K

 ​ [1 − (1 − ​s​i​​)​​n​t​​],

for ​n​t​ ∈ {​n​1​  ​n​2​, … , ​n​T​}. The expected total number of nonempty bins given 
{​n​1​, ​n​2​, … , ​n​T​} is, thus,

(6)	 E(k | ​n​1​, ​n​2​, … , ​n​T​)  = ​ ∑​ 
j=1

 ​ 
T

  ​ ​∑​ 
i=1

 ​ 
K

 ​ [1 − (1 − ​s​i​​)​​n​j​​].

It is important to note that, since {​n​1​, ​n​2​, … , ​n​T​} is a random variable, conditional 
aggregate statistics will not coincide with the corresponding unconditional expecta-
tion E(k | n) with n = ​∑​ j=1​ 

T
  ​ ​n​j​  .

Similarly, we can compute the probability of a single nonempty bin for each row 
using (3). We can then derive the proportion of rows which are expected to contain 
a single nonempty bin. This will allow us, for example, to derive how the fraction 
of single-product exporters varies across US export destinations using the actual 
aggregate export flows. As discussed above, the conditional statistics for any given 
row are as in the first version of the model.

	 Pr (​k​t​  =  1 | ​n​1​, ​n​2​, … , ​n​T​)  = ​  1 _ 
T

 ​  ​∑​ 
j=1

 ​ 
T

  ​ ​∑​ 
i=1

 ​ 
K

 ​ ​s​ i​ ​n​j​​.

Figure 2. Balls and Bins: T by K Case

 s 1      s 2 

 v 1

     v 2 

 n 1      

n 2 

 m 1      m 2 

  n 4

 

…

… …

…
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In practice, we will sometimes approximate the distribution of balls across rows 
with some parametric distribution. Online Appendix C shows how to compute 
aggregate statistics in this case. Online Appendix C also describes how to compute 
the fraction of balls that are expected to fall into single nonempty bin rows: this is 
useful when we want to derive the fraction of exports originated in single-product or 
single-destination exporters.

II.  Zeros in Trade Flows

A. Product-Level Zeros

The first data pattern we explore is the prevalence of product-level zeros (i.e., 
missing trade flows) in country-level exports. In other words, we look at the exten-
sive margin of products when the units of observation are countries. We later discuss 
firm-level evidence.

We also take the opportunity to carefully describe how we map the data to the 
balls-and-bins model and back. The methodology is essentially the same for every 
exercise in the article.

B. The Facts

Baldwin and Harrigan (2011) recently reported that most potential 
destination-country product combinations are missing in US exports. In 2005, 
the United States exported 8,867 different ten-digit Harmonized System catego-
ries to 229 different countries. Of these 2,030,543 potential trade flows, 1,666,046 
(or 82  percent) were missing.8 In other words, the average country bought only 
18 percent of the 8,877 products the United States exports. Helpman, Melitz, and 
Rubinstein (2008) look at the country-level zeros in the gravity equation. Of all 
potential country pairs, only about 50 percent have positive trade in either direction.9

Empirical Regularity 1: Most of the potential product-country export flows are 
zero—82 percent of them in the United States.

Other levels of aggregation lead to a similar incidence of zeros. Table 2 reports 
the incidence of zeros for four classification levels. Zeros stop being prevalent only 
at the very broad, two-digit level.

Baldwin and Harrigan (2011) then report how the incidence of zeros relates to the 
size of the importer and its distance to the United States. Larger countries that are 
closer buy a larger variety of products. Larger countries are more likely to import 
any given product. The same is true for richer countries. The incidence of nonzero 
flows decreases with distance: closer countries have more nonzero flows than farther 
countries.

8 Haveman and Hummels (2004) report a similar incidence of zeros for imports.
9 Hummels and Klenow (2005) also look at the product-margin of aggregate exports. They have a different 

measure of the extensive margin.
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Empirical Regularity 2: The incidence of nonzero product exports increases with 
destination-country size and decreases with distance.

C. From the Data to the Model

In order to map the balls-and-bins model to the data, we proceed as follows. The 
trade flow of interest is the total US exports to a given country; that is, we will have 
as many trade flows as destination countries (229). We measure the number of ship-
ments going to a country to calibrate the number of balls. For example, Canada (the 
biggest importer) received 7.3 million shipments in 2005. Equatorial Guinea, the 
median buyer of US exports, had 2,641 shipments.10

The bins correspond to the 8,867 ten-digit HS categories in which the United 
States exports at all.11 The size of each bin (​s​i​) is the share of each HS code in total 
US exports in 2005. That is, we divide the number of export shipments in a given 
HS code with the total number of shipments (21.6 million).

We then calculate the expected number of nonempty bins for each country using 
the previous formula (1),

	 E(​k​c​ | ​n​c​)  = ​  ∑ ​ 
i=1

  ​ 
8, 867

 ​[1 − (1 − ​s​i​​)​​n​c​​],

where ​n​c​ is the number of balls for country c and ​k​c​ is the number of nonempty HS 
categories in exports to country c. The expected number of nonempty bins overall 
is then

	 E(k | ​n​1​, ​n​2​, … , ​n​229​)  = ​ ∑​ 
c=1

​ 
229

 ​ ​k​c​  .

Note that we are computing the expectation conditional on the number of export 
shipments from the United States to each country. To retrieve the incidence of zeros 
we need only to subtract from and divide by the appropriate number of categories; 

10 Online Appendix A discusses the definition of shipments and the collection of trade data in more detail. A 
natural question is why there are no more trade shipments in a year. Hornok and Koren (2013) document how the 
number and size of shipments vary across products, mode of transportation, and with the administrative barriers set 
by trading countries.

11 We ignore the 121 HS codes for which we did not observe any shipments in 2005. It is possible to account for 
the missing bins with a simple specification: if anything, ignoring the missing bins reduces the expected fraction 
of zeros in the model.

Table 2—The Incidence of Zeros under Different Classifications

Classification Bins Incidence of zeros (percent)

Ten-digit 8,877 82
Six-digit 5,182 79
Four-digit 1,244 66
Two-digit 97 36
Section 21 16
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8,867 if we are looking at the zeros for a particular trade flow, or 229 × 8,867 for 
overall US exports.

The assumption underlying this calibration is that each destination country 
would buy the same basket of American products in exactly the same propor-
tions; that is, we have matched the marginal distribution across products and 
assumed that the product bin a ball falls into is independent of the country of 
destination. The only difference across countries is that smaller countries (such 
as Equatorial Guinea) have a smaller sample of shipments—drawn from the same 
distribution—than larger ones (such as Canada). Most trade theories are con-
cerned with the joint distribution of trade across countries and products. Our 
calibration provides a neutral, atheoretical benchmark.

D. The Model’s Predictions

We find that, indeed, most of the potential product-level bilateral flows are zero in 
the model. The expected share of zeros is 72 percent, surprisingly close to the data 
(82 percent). That is, seven out of every eight zeros are to be expected given the 
sparsity of the data. Table 3 reports the predicted fraction of zeros for other levels of 
sectoral aggregation. The model’s predictions track the observed incidence of zeros 
rather well at all levels.

Moreover, the model matches quantitatively the pattern of zeros across flows 
in the data. To show this, we plot the number of exported products for each des-
tination country against the total number of export shipments to that country in 
Figure 3. The dots represent the actual number of products in the data; the line is 
the predicted number of nonempty bins for each country. We already know that 
the balls-and-bins model somewhat underpredicts zeros, hence overpredicts the 
number of exported products, but the shape of the relationship to total exports is 
strikingly similar.

Zeros are more likely to occur in small export flows (those with few balls). This 
already suggests that nonzero flows may follow a gravity equation, as total export 
flows are well known to adhere to gravity. We then try to replicate the gravity speci-
fication in Baldwin and Harrigan (2011). We take the predicted probability of a 
nonzero flow (1 − (1 − ​s​i​​)​​n​c​​) and regress it on the gravity variables such as country 
size and distance. We emphasize that the balls-and-bins model has nothing to say 
about gravity, but given that the total number of balls (​n​c​) is highly correlated with 
the gravity variables, we may find some significant correlations.

The second column of Table 4 reports the results for the balls-and-bins model. 
For convenience, we replicate the regression in Baldwin and Harrigan (2011) and 

Table 3—The Incidence of Zeros under Different Classifications

Classification Bins Data (percent) Balls and bins (percent)

Ten-digit 8,867 82 72
Six-digit 5,182 79 68
Four-digit 1,244 66 52
Two-digit 97 36 23
Section 21 16 10
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report the resulting coefficients in the first column.12 Bigger and closer countries 
are more likely to have a nonzero flow under the balls-and-bins model, just as in 

12 For the top 99 trading partners of the United States, we regress the incidence of a positive export flow on real 
GDP of the importer, real GDP per capita, and the distance of the importer from the United States using a linear 
probability model, so coefficients can be understood as marginal effects. Distance is divided in the same categories 
as in Baldwin and Harrigan (2011). Standard errors are clustered at the country level. These results are comparable 
to Table 4 of Baldwin and Harrigan (2011). The coefficients are similar, but not identical, potentially due to some-
what different real GDP measures.

Figure 3. The Number of Shipments and the Number of Products
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Table 4—Nonzero Flows and Gravity: Balls and Bins

Nonzero trade flow B + B model

Real GDP 0.078***
(0.007)

0.099***
(0.008)

Real GDP per capita 0.045**
(0.011)

0.063***
(0.012)

Distance = 0 0.338***
(0.060)

0.215***
(0.033)

0 < distance < 4,000 km 0.235***
(0.024)

0.239***
(0.029)

4,000 < distance < 7,800 km omitted omitted

7,800 < distance < 14,000 km 0.010
(0.035)

−0.013
(0.040)

Distance > 14,000 km 0.034
(0.036)

0.015
(0.047)

Observations 868,966 868,966

Clusters 98 98

​R​2​ 0.23 0.44

*** Significant at the 1 percent level.
  ** Significant at the 5 percent level.
    * Significant at the 10 percent level.
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the data. Moreover, the magnitudes of the coefficients are surprisingly similar. The 
only exception are the two countries bordering the United States (“distance  = 0”), 
Canada and Mexico. These seem to import more HS codes in the data than under 
the balls-and-bins model.

Quantitatively, the dispersion in flow and bin sizes plays an important role. In 
both cases, the distribution is skewed; that is, some product categories and US trade 
partners are very large, but the vast majority of product categories and trade partners 
are very small. It is precisely for the combination of latter (small country export for 
a small product category) that we have the missing trade flows in the data. And it 
is precisely for smaller bins and fewer balls that the model predicts the most zeros.

Let us start with the distribution of bin sizes. The size of the average bin is 
1/8,867 = 1.13 × 1​0​−4​. However, the size distribution across bins is rather skewed. 
The size of the median bin is 2.2 × 1​0​−5​, about five times smaller than the average. 
For comparison, we find 57 percent zeros if we assume that all 8,867 HS codes have 
the same size.

What is the source of this skewness across product categories? Category sizes 
may partly reflect the export specialization of the United States, as higher exports 
of a product make that product category bigger. However, they are also affected 
by the nature of the classification system. As an illustration, we flag all product 
categories that contain any of the words “parts,” “other,” “etc.,” and “n.e.s.o.i.” (for 
“not elsewhere specified or included”) as catch-all categories. These are probably 
heterogeneous aggregates of various products. Of the 100 biggest categories, 72 are 
such catch-alls. In contrast, only 13 of the 100 smallest categories are catch-alls.

It is important to emphasize that it is the dispersion in bin sizes, and not some 
particular bins being large and others small, that leads balls-and-bins to predict so 
many zeros. To check for this, we rerun the model with the bin-size distribution 
calibrated to the HS shares of US exports to Canada and Mexico only. These two 
trade flows contain very few zeros, and so the size distribution of bins would not be 
affected by the large incidence of zeros in the data. The predicted fraction of zeros 
under these bin sizes is 75 percent. We find similar predictions if we use the shares 
of other countries or some exogenous bin-size distribution with skewness.

The skewness of trade flows is also important. Canada alone accounts for more 
than one-fifth of total US exports; the top five US trade partners account for more 
than a half of the total. In order to shut down any shipment size variation across 
destinations, we also computed the fraction of zeros by dividing export flows (in 
dollars) by the average shipment value, $36,000. The fraction and pattern of zeros 
are virtually unchanged.

We also replace the actual trade flows with the trade flows predicted by the grav-
ity equation. We find 67 percent zeros, the number being slightly lower than the 
baseline result mainly due to the reduced country sample. This exercise also allows 
us to pin the key determinant of the skewness in trade flows. Assuming distance has 
no effect on trade flows does not change the number of zeros from 67 percent. In 
contrast, assuming all countries have identical size brings the fraction of zeros down 
to 30 percent. Thus it is the skewness in country size, through its impact on export 
flows, that is most important for the calibration.

On a more positive note, we show how a quantitative evaluation of the models 
could elicit some identification. We underpredict the fraction of zeros as well as the 
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impact of distance. Both effects are relatively small, so we would need trade models 
capable of matching the data with precision.

E. Firm-Level Zeros

Zeros in firm-level trade flows display a remarkably similar pattern in the data. 
The average exporting firm in 2000 shipped goods to only 3.5 countries from a total 
of 229.13 In other words, 98 percent of potential firm-country trade flows are zero. 
Again, zero trade flows follow a well-defined spatial pattern, with zeros being more 
frequent for small, distant countries.

We can calibrate the balls-and-bins model to study zeros in firm-level trade. The 
number of balls per destination country are again taken by counting the shipments 
going to that country. The key difference is that now we need to create bins for firms 
as opposed to product categories. The total number of bins equals the number of 
exporting firms, 167,217.14 The size distribution of firm bins is calibrated as follows. 
We approximate the distribution of exports with a lognormal distribution with mean 
μ = 11 and standard deviation σ = 3. This specification matches the mean exports 
of $5.11 million and has a median exports of $59,300 and does a good job in match-
ing the Lorenz curve reported in Bernard, Jensen, and Schott (2007). As it is well 
known, there is a striking skewness in the distribution of exports across firms.15

The balls-and-bins model predicts that 96  percent of the potential firm times 
country trade flows is going to be zero. This is very close to the 98 percent we see 
in the data. What about the distribution of firm zeros across destinations? For each 
country, we can calculate the expected number of nonempty firm bins. We can then 
regress (the log of) this number on GDP and distance.16 Table 5 presents the results. 
For convenience, we reproduce the regression estimate by Bernard et al. (2007) in 
the first column.

The coefficient estimates in the simulated regression are similar to the ones in the 
actual data. Just as in the data, bigger, closer countries are served by more exporters: 
the more balls are thrown, the fewer bins will be left empty. Interestingly, the skew-
ness in firm exports does not play as big a role as it did for product bins: given that 
there are so many, most firm bins are going to remain empty anyway.17

III.  Firm-Level Export Patterns

We now turn to evidence on the extensive margin at the level of individual export-
ing firms. In this section we ask how many products firms export and how many 

13 Bernard, Jensen, and Schott (2009).
14 Bernard, Jensen, and Schott (2009), Table 2.
15 Note that this is conditional on having positive exports. In other words, we try to explain only the allocation 

of exporting firms across destination markets; we do not analyze the question of which firms export. That is done 
in Section IV.

16 We take GDP (in current-price USD) from the World Development Indicators. We take distance from the 
bilateral distance dataset of CEPII.

17 We calibrated firm bins to the distribution of overall sales in manufacturing, which resulted in 93 percent of 
firm-country bins remaining empty and a 0.60 elasticity of the number of firms exporting to a country with respect 
to country size. When using 167,217 symmetric firm bins, we got 82 percent empty bins and an elasticity of 0.72. 
We also explored alternative distributions, like a Pareto, with similar results.
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destinations they serve. Note that the universe of interest is the set of exporting 
firms, because the empirical facts are usually reported only for firms that have 
some exports.18 This way we can use the balls-and-bins model to understand these 
moments and abstract, for now, from the split between exporters and nonexporters.

The key facts about the extensive margin at the firm level are that while most 
firms export a single product to a single country, the bulk of exports is done by 
multiproduct, multidestination exporters.19

To start with, 42 percent of the firms export only a single product, defined by the 
ten-digit HS code. While being a little less than half of the total firms, they account 
for a tiny fraction of total exports, 0.4 percent.

Empirical Regularity 3: Forty-two percent of firms export a single product 
(defined as a ten-digit HS code). These firms account for only 0.4 percent of exports.

A similar pattern exists for firms that export to a single country. These firms 
account for a little less than two-thirds of the total but still amount to a small frac-
tion of total exports.

Empirical Regularity 4: Sixty-four percent of firms export to a single country. 
These firms account for only 3.3 percent of exports.

But perhaps the most striking fact corresponds to the fraction of firms that export 
a single product to a single country. These firms represent 40 percent of the total 
exporters yet account only for a minuscule 0.2 percent of total exports.

18 Though export datasets can be merged with domestic data such as in Bernard, Jensen, and Schott (2009) and 
Eaton, Kortum, and Kramarz (2004).

19 The following facts are for US merchandise trade in 2002, reported in Bernard et al. (2007), Table 4.

Table 5—Exporting Firms and Gravity: Balls-and-Bins

log number of 
exporting firms

log number of 
nonempty bins

log GDP 0.71 ***
(0.04)

 0.60 ***
(0.03)

log distance −1.14 ***
(0.16)

−0.89 ***
(0.13)

Observations 175 184

​R​2​ 0.74 0.72

*** Significant at the 1 percent level.
  ** Significant at the 5 percent level.
    * Significant at the 10 percent level.
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Empirical Regularity 5: Forty percent of firms export a single product to a single 
country. These firms account for only 0.2 percent of total exports.

Let us turn now to the calibration of our benchmark. The ten-digit HS codes are 
calibrated to the aggregate export share of each HS code’s shipments in total US 
exports in 2005. The size of each country bin is calibrated to the share of that coun-
try shipments in total US export flows.20 Table 6 lists the five biggest country bins.

We assume each firm has a different number of export balls. Because we do not 
have data on the number of shipments at the firm level, we calibrate the number 
of balls to the distribution of exports across firms. As we did earlier, we approx-
imate the distribution of exports with a lognormal distribution with μ = 11 and 
σ = 3. Corresponding to the average size of export shipments in 2000, we take each 
$36,000 of export sales to represent one ball, rounding up. Because of the extreme 
skewness in the distribution of exports by firm, many firms will end up with just one 
export ball.

The predicted fraction of single-product exporters is 43 percent. This is very close 
to the actual fraction in the data (42  percent). The predicted fraction of exports 
coming from single-product producers is 0.3 percent, close to the actual 0.4 per-
cent. Let us see how the balls-and-bins model manages to reproduce the frac-
tion of single-product exporters with such precision. In the model practically all 
single-product exporters have only one ball. This is because with 8,867 HS codes, 
the second ball is very likely to fall into an HS category different from the first 
one. Only 0.3 percent of two-ball exporters are single-product exporters. The key to 
understanding the incidence of single-product exporters is that there are plenty of 
very small exporters.

The model underpredicts the data with respect to the fraction of single-country 
exporters: 45 percent in the model for 64 percent in the data. The reason is that the 
fraction of single-country exporters falls sharply with firms with the second and 
third balls. For example, the model predicts that only 11 percent of firms with two 
shipments export both of them to Canada (and 4 percent to Mexico). In order to 
match this fact, a structural model will require a mechanism that increases the frac-
tion of relatively large exporters that export only to Canada (and possibly Mexico). 
We view this an excellent example of how the balls-and-bins benchmark can high-
light as informative statistics that were not obviously relevant ex ante.

20 The assumption here is that the structure of aggregate exports did not change too much between 2002 and 
2005. Results are virtually unchanged if we use value shares instead. We maintain the ongoing assumption of no 
systematic relationship between categories.

Table 6—The Five Biggest Country Bins

Country Share

Canada 0.341
Mexico 0.189
Japan 0.041
United Kingdom 0.035
Germany 0.030
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Last but not least, balls-and-bins is right on the spot with respect to the fraction 
of single-product, single-country exporters, and the small fraction of exports that 
they account for. Note that a fraction of 40 percent of single-product, single-country 
exporters implies that most single-product exporters are also single-country export-
ers, and vice versa. Is this surprising? The balls-and-bins model makes it clear that 
the fact follows from the presence of many small exporters. Almost all single-product 
exporters have only one ball, and these are all going to be single-country exporters. 
And this exactly what we see in the data. The conditional probability of single-country 
exporters among single-product exporters is 99.9 percent in the model, close to the 
96 percent in the data.

Our results suggest that the skewness of the exporter distribution is key to under-
standing the split between single destination, single product firms and the rest. 
In particular, the left tail of the export distribution—the small exporters—is what 
enables the balls-and-bins model to match the data. This property of the distribu-
tion is not specific to exporters. For example, our results do not change when we 
calibrate the model to match the observed skewness in domestic sales for the United 
States.21 In contrast, the balls-and-bins model underpredicts the data once we censor 
the left tail. Interestingly, the right tail properties of the distribution have little bear-
ing on the results as virtually all firms selling more than $100,000 are predicted to be 
multicountry, multiproduct exporters. We thus conclude that trade models capable 
of matching the fraction of small exporters in the data will also be able to repro-
duce the firm-level export patterns discussed here.22 As we shall see in the next sec-
tion, the split between exporters and nonexporters is not due to sparsity. There are 
thus strong economic forces, yet to be fully understood, shaping the distribution of 
exporters and the firm-level facts discussed here.

IV.  Exporting Firms

We now move on to the differences between exporting and nonexporting firms. It 
is a well-established fact that exporters are few in number; also that they are signifi-
cantly larger than nonexporting firms.

According to Bernard et al. (2007), only 18 percent of manufacturing firms export 
at all. The fraction drops to about 3  percent when all firms outside manufactur-
ing are included.23 Other studies have likewise confirmed the scarcity of exporters. 
Plant-level statistics also fall in the same pattern. For the quantitative exercise, we 
stay with the fraction of exporters among US manufacturing firms.

Empirical Regularity 6: Only 18 percent of manufacturing firms export in the 
United States.

The second fact is that exporters sell significantly more than nonexporters—about 
4.4 times more, according to Bernard et al. (2007). Again, firms outside manufactur-
ing and plant-level evidence reveal similar patterns.

21 Online Appendix B contains several alternative calibrations of firm size skewness.
22 Most of the literature has not paid much attention to small exporters, with the exception of Arkolakis (2010).
23 See Table 2 in Bernard et al. (2007). The data are from the 2002 Economic Census.
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Empirical Regularity 7: Among US manufacturing firms, exporters sell 4.4 times 
more than nonexporters.

That exporters are few and they are larger than nonexporters have been confirmed 
in other datasets, in other settings, and with other measures of size.

We follow essentially the same steps as before to map the model to the data. 
The key difference is that now the output flow will include total sales, not only 
exports. We thus need data on total sales per firm in order to construct the distribu-
tion of balls. Using publicly available data from the Statistics of US Businesses of 
the Census for year 2002, we approximate the distribution of firm sales by a lognor-
mal distribution with μ = 13.2 and σ = 2.66. This corresponds to median sales of 
$660,000 and average sales of $13.2 million. As it is well known, there is enormous 
skewness in the size distribution of firms. Whereas 59 percent of firms sell less than 
$1 million, the average firm sells $13.2 million.24 In the 2002 Economic Census, 
there were 297,873 manufacturing firms. As before, we obtain the number of balls n 
per firm by dividing its total sales by $36,000 and rounding up.25

To distinguish between exporters and nonexporters we need only two bins: one for 
domestic sales, the other for foreign sales. Total receipts amounted to $3.94 trillion 
for manufacturing firms in the 2002 Economic Census. Exports of manufactured 
goods amounted to $545 billion in 2002.26 That is, 13.9 percent of manufacturing 
receipts came from exports. This pins down the size of the domestic bin at 0.861 and 
the size of the export bin at 0.139.

We find that exporters are much less common in the data than in the model:  
74  percent of the manufacturing firms should be exporting according to the 
balls-and-bins model, compared to 18 percent in the data. Clearly, the scarcity of 
exporters is not a byproduct of sparsity and is, thus, vindicated in its status as a key 
stylized fact in the trade literature.

It is easy to see why the model overpredicts the fraction of exporters. The prob-
ability that a firm with n balls of total sales does not export is

	 (1 − s​)​n​  =  0.8​6​n​.

Among the smallest firms, that is, with one ball, 14 percent of them export. This is 
already a very high number given that only 18 percent of total manufacturing firms 
export. It obviously gets worse. Since where each ball ends up is independent of the 
distribution of existing balls, each $36,000 has quite a high chance of ending up going 
to a foreign market. Almost half of the firms with a paltry $100,000 of total sales 
should export. A median firm has a 95 percent chance to export. It is clear that this 
is not the case in the data: exporting is a more unlikely event than the balls-and-bins 
model would indicate.

The unconditional probability of exporting is convex in the fraction of exports, 
s, so if there is heterogeneity across industries, the aggregate economy will contain 

24 We also experimented with fitting a Pareto distribution with similar results.
25 In the previous section we used evidence on the average shipment value to pin down the “ball size.” We have 

no direct equivalent for total sales.
26 Bureau of the Census, FT-900, “International Trade in Goods and Services.” We converted all figures to 2000 

dollars.
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fewer exporters than predicted by the average s. However, at the three-digit level, 
this heterogeneity is rather small and does not change the exporting probability 
substantially.

The model’s prediction for the exporter’s size premium is also off. Surprisingly, 
though, the model overpredicts the size of exporters. That is, despite exporters being 
four-fifths of total firms in the model for one-fifth in the data, the model predicts that 
exporters are 34 times larger than nonexporters on average, while in the data they 
are “only” 4.4 times larger. In terms of the exporter size premium, in log sales, the 
difference in the model is 3.53, for 1.48 in the data.27

To understand why exporters are larger under balls-and-bins than in the data, 
note that balls-and-bins implies that the largest firms export with a probability 
close to one. Even the median firm that has $660,000 in sales, corresponding to 
18 balls, exports with probability 0.93. The skewness of the firm sales distribution 
then implies that the average firm in the top half of the distribution is much larger 
than any of the nonexporters, who mainly come from the bottom half. The fact that 
the size premium is smaller in the data suggests the data have a weak sorting of 
exporters by size: exporters are smaller, not larger, than expected. In other words, 
there has to be a substantial fraction of very large firms that do not export—in 
contrast with the model.

V.  The Implications of Balls-and-Bins for Trade Theory

In this section, we back up the claim that if a fact is matched by the balls-and-bins 
benchmark, then there is a wide range of theoretical models which are also consistent 
with that fact. First, we show how to generate predictions for finite-sample data 
from any structural model. We also show that the baseline calibration for the 
balls-and-bins exercise is nested as a special case in most structural trade models—
and thus they are all capable of matching a fact if it is matched by the balls-and-bins 
model. Identification problems, though, can also arise within a single structural 
model class: we briefly discuss the case of models with economies of scale. We 
refer the reader to online Appendix D for a step-by-step description on how to nest 
the balls-and-bins within an extended version of Helpman, Melitz, and Rubinstein 
(2008).

A. Model Predictions for Finite-Sample Data

Most trade models take the form of a set of continuous trade flows; that is, if 
we were to evaluate the models at different frequencies, the predicted export flows 
would just scale up or down proportionately with the period length, akin to oil flow-
ing through a pipeline at a constant rate.

The data, however, consist of a finite number of observations, corresponding to 
the transactions in a given time period, usually a year. As several trade models have 
proven their worth on many dimensions, we aim to generate finite-sample predic-
tions from any model in a parsimonious manner. Our approach is simply to sample 

27 In online Appendix C we formally derive the exporter’s size premium and include a parametric example.
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the model for n ∈ ℕ observations, ideally replicating the number of transactions or 
shipments in the data and reinterpreting the model’s predicted market shares as the 
likelihood that any given transaction belongs to a particular category.

To fix ideas, we focus the discussion on trade flows at the country-product level. 
Let superscript m ∈ M index a model class, say, a Ricardian or a Melitz model, 
that predicts trade revenues ​R​m​​( ​X​j​ , ​X​g​, θ )​ for country j and product g given some 
variables ​X​j​ and ​X​g​ as well as a vector of parameters θ from a set of admissible val-
ues ​Θ​m​. The variables ​X​j​ and ​X​g​ may be equilibrium variables obtained elsewhere 
in the model or data on distance, factor intensity, other covariates, or perhaps fixed 
effects for countries and products.28 The market share of each country-product pair 
in model m is simply

	​ s​ jg​ m
 ​  = ​ 

​R​m​​( ​X​j​, ​X​g​, θ )​  _ 
​​ 
_
 R​​m​
 ​ ,

where ​​ 
_
 R​​m​ is the sum of all trade flows.

The model’s market share for a country-product pair j, g pins down, quite natu-
rally, the likelihood that a transaction belongs to such a pair. Assuming that transac-
tions are independent of each other, the formulas from Section I carry on with the 
whole vector of market shares in place of the bin size distribution. For example, the 
probability that a country-product pair is observed in model m for a finite sample of 
size n is simply 1 − ​​( 1 − ​s​ jg​ m

 ​ )​​n​.
Note that the model may predict an empty trade flow and, thus, a country-product 

pair may have zero probability. We call this a “fundamental zero.” However, we also 
know a trade flow may go missing in the sample even if it has positive probability—a 
“sample zero.” In a dense dataset, n → ∞, the realized share of shipments in any 
category will converge almost surely to the market shares predicted in the model 
and only fundamental zeros would remain zeros. In other words, we would recover 
exactly the underlying continuous flows from the structural model. On the other 
hand, if the data are sparse, that is, if the number of observations is low relative to 
the level of detail we wish to analyze, sample zeros will be pervasive, and realized 
market shares will have some sampling variation.

B. Nesting the Balls-and-Bins Baseline Calibration

Throughout the article, we have assumed that there is no systematic relationship 
across categories in order to construct a parsimonious benchmark. It turns out this 
assumption is usually nested as a particular parameterization in most standard trade 
models. Formally, if there exists a parameter vector ​θ​ bb​ m

 ​ ∈ ​Θ​m​ such that all trade 
flows can be written as multiplicatively separable in product and country variables,

	​ R​m​​( ​X​j​, ​X​g​, ​θ​ bb​ m
 ​ )​  = ​ d​ j​ m​​( ​X​j​ )​ ​d​ g​ m​​( ​X​g​ )​,

28 The exact variables are expected to vary across models: we omit the explicit dependence on the model m to 
keep the notation as concise as possible.
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then when θ = ​θ​ bb​ m
 ​, the product and country assignments become independent; that 

is, the likelihood that a shipment is classified in product g and country j is simply ​
s​ jg​ m

 ​ = ​s​ j​ m​​ s​ g​ m​, where ​s​ j​ m​ and ​s​ g​ m​ are the marginal probabilities. The above property also 
typically allows the model m to match the distribution of trade flows across products 
and across countries—and we then retrieve exactly the baseline calibration for the 
balls-and-bins.

The condition of multiplicatively separable trade flows is satisfied by the basic 
trade model featuring an Armington-type, constant-elasticity-of-substitution 
demand system. The latter is ubiquitous as a building block in richer trade models, 
so it is usually possible to find parameters such that trade flows are multiplicatively 
separable and thus nest our baseline calibration. For example, a trade model based 
on comparative advantage will boil down to the multiplicatively separable specifica-
tion when the distribution of unit costs across sectors is equated across countries—
that is, when there is no systematic relationship between countries and products. 
There is also no question trade models in use have proven to be very successful at 
matching quantitatively the marginal distributions across categories, for example, 
by reproducing the gravity equation.

C. Identification

We now close our argument. If two classes of models m, ​m′​ allow for trade 
flows to be multiplicatively separable, then neither of them will do worse than the 
balls-and-bins model at matching a given data moment in a finite sample. If the 
balls-and-bins model matches the data moment, then both models will inherit the 
ability to do so—and, hence, the data moment is not useful to distinguish the mod-
els. Formally, let ​ψ​m​(θ) denote the predicted (theoretical moment) from a class m of 
models, parameterized by the vector θ within the admissible set of parameters ​Θ​m​. 
The corresponding data moment is ​ψ​∗​. If a class of models admits a parameterization ​
θ​ bb​ m

 ​ such that trade flows are multiplicatively separable, then the best estimate in 
each model ​θ​m​ cannot be further from the data moment than under ​θ​ BB​ m

 ​, that is,

	 | ​ψ  ​m​(​θ​ m​)  − ​ ψ​∗​ | ≤ | ​ψ​  m​(​θ​ bb​ m
 ​) − ​ψ​∗​ | = | ​ψ  ​bb​ − ​ψ​∗​ |,

where ​ψ​  bb​ is the balls-and-bins model’s prediction for that moment. Then, if both 
m, ​m′​ nest the balls-and-bins baseline calibration, their best fit for moment will be 
similar, since by the triangle inequality,

  | ​ψ  ​m​(​θ​ m​) −   ​ ψ​​ m​ ′​​(​θ​​ m​ ′​​) | ≤  | ​ψ  ​m​(​θ​ bb​ m
 ​) − ​ ψ​∗​ | +  | ​ψ  ​​m​ ′​​​( ​θ​ bb​ ​m​ ′​​ )​  − ​ψ​∗​ | ≤  2 | ​ψ  ​bb​ − ​ψ​∗​ |.

That is, the difference between the best of the two classes of models is smaller than 
twice the difference between the balls-and-bins predictions and the data. Whenever 
balls and bins match the data well and | ​ψ  ​bb​ − ​ψ​∗​ | is small, the two models cannot 
be distinguished by their ability to reproduce the aforementioned data moment.

Unfortunately, moments in sparse datasets may not be informative even within the 
strict confines of a single model class; that is, model ​ψ  ​m​(θ) and data ​ψ​∗​ may be very 
close for a large range of parameterizations θ ∈ ​Θ​m​. The next subsection illustrates 
this problem for trade models with economies of scale.
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D. Zeros and Economies of Scale

Consider a model class m such that trade flows below a certain size, pinned 
down by the model parameter θ, never take place. While admittedly stylized, this 
specification naturally captures the extensive margin implications of a wide array 
of models with economies of scale. Such models are parameterized by a thresh-
old t ≥ 0 such that if a bin is smaller than t, that bin will remain empty.29 Let ​θ  ​m​ 
denote the number of fundamental zeros; the number of bins that are smaller than 
t, ​θ​  m​ = max{i : ​s​i​ ≤ t}. Within this class of models the parameter ​θ​  m​ fully describes 
the model. Clearly, ​θ​ bb​ m

 ​ = 0 retrieves the balls-and-bins benchmark.
The moment we are interested in, ​ψ​  m​, is the number of zero trade flows. The 

prediction of a model with parameter ​θ​  m​ with respect to the total zeros is given by

	​ ψ  ​m​(​θ  ​m​)  = ​ ∑​ 
i=1

 ​ 
​θ​ m​

 ​ 1  + ​  ∑ ​ 
i=​θ​ m​+1

​ 
K

  ​(1 − ​s​i​​)​n​,

where, without loss of generality, we have sorted the bins in increasing size. The dif-
ference between this model prediction and the prediction of balls and bins is

	​ ψ  ​m​(​θ  ​m​)  − ​ ψ  ​m​(​θ​ bb​ m
 ​)  = ​ ∑​ 

i=1
 ​ 

​θ​ m​

 ​ [1 − (1 − ​s​i​​)​n​].

The formula has a simple interpretation: it is the number of bins among 
{1, 2, … , ​θ  ​m​} that are expected to be nonempty in the balls-and-bins baseline. As 
these are exactly the smallest bins, they are bound to be a sample zero with high 
probability in the balls-and-bins model. As a result, across a large range of thresh-
olds that possibly close many bins, there will be almost no change in total zeros as 
we are trading fundamental for sample zeros virtually one to one. But the abundance 
of sample zeros is, in a nutshell, the reason that the balls-and-bins model is capable 
of generating a large number of total zeros and matching the data.

Note that if the data were dense, that is, the number of shipments would be very 
large, total zeros would increase one-to-one with the number of fundamental zeros, 
as li​m​n→∞​ ​ψ​  m​(​θ​  m​) = ​θ​  m  ​. In this case, total zeros would be perfectly informative 
about fundamental zeros, and there would be no problem identifying the relevant 
model of economies of scale.

We briefly report here numerical results for product-level zeros and the preva-
lence of exporting firms. Let us start with product-level zeros. The balls-and-bins 
model predicted that 72.1 percent of product-country pairs would be empty, that is, 
​ψ ​m​(0) = 0.721. If we set ​θ ​m​ to close half of all bins, the prediction for total zeros 
barely budges to 72.8 percent.30 That is, even though the model closes more than a 
million country-product pairs, the total number of zeros changes by only 0.7 per-
cent. Simply put, the balls-and-bins model matches the data because the vast major-
ity of bins are expected to be empty: even the median bin has less than one chance 

29 The threshold is stated directly in terms of bin size, but we can always scale the threshold units to shipments by 
multiplying t by the number of shipments n, and then to dollars by multiplying it with the average shipment value.

30 As in Section IIA, we condition on the flow of shipments per country. The results are very similar if we do not 
condition or even after recalibrating bin sizes to respect the aggregate distribution of sales over products.
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in a hundred to receive a ball. Closing these bins has virtually no impact on the total 
number of product-level zeros, and, thus, the latter cannot be used to identify ​θ ​m​ pre-
cisely, or, more broadly, to estimate the fixed costs of exporting with any precision.

The conclusion is drastically different in the exercise regarding exporting firms. 
As soon as we start closing exporting bins, the share of exporters drops very fast. 
Recall that under the benchmark balls-and-bins calibration, 74 percent of firms were 
exporters; that is, only 26 percent were nonexporters. By shutting down no more 
than one-fifth of the exporting bins the share of exporters drops below 70 percent. 
From then on, the share of exporters drops virtually one-to-one with the share of 
fundamental zeros. For example, closing 30 percent more bins we find that the frac-
tion of exporters drops below half. In stark contrast with the previous exercise, the 
model predictions react sharply to threshold values, so we can take the fraction of 
exporters as an informative moment of the magnitude of the underlying economies 
of scale.31

VI.  Conclusion

Categorical datasets do contain a lot of information, even if they are sparse. We 
provided a benchmark to discern which statistics are driven by the sparsity—and 
thus contain little information about the extensive margin—and those that are not—
and require a model to posit the correct joint distribution across categories in order 
to reproduce the fact. We evaluated several stylized facts commonly cited in the 
trade literature and found a mixed picture. Facts relating the frequency and pattern 
of zeros in product-country trade flows or to multidestination, multiproduct export-
ers do not differentiate among any model that can reproduce the marginal distribu-
tions, i.e., across products, countries, or firms. On the other hand, the split between 
exporters and nonexporters is clearly not driven by sparsity and thus informative of 
the underlying mechanism driving the export participation decision.

We hope that our approach can be used in future empirical work using massive 
micro-level trade datasets. Recent transaction-level datasets are very detailed, and 
trade flows are typically broken down by firms, eight or ten-digit product codes, and 
destination countries.32 By their very nature, these datasets are sparse in the sense that 
the number of observations is low with respect to the number of categories of interest.
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